

# Equivalencia entre distintas designaciones

| Designación | Otras designaciones |          |           |          |        |  |  |  |  |
|-------------|---------------------|----------|-----------|----------|--------|--|--|--|--|
| UNE-EN      | EN 100              | 84:1998  | Alen      | Francia  |        |  |  |  |  |
| ISO 683-3   | Simbólica           | Numérica | Simbólica | Numérica | AFNOR  |  |  |  |  |
| 18CrNiMo7-6 | 18CrNiMo7-6         | 1.6587   | 17CrNiMo6 | 1.6587   | 18NCD6 |  |  |  |  |

## Composición química

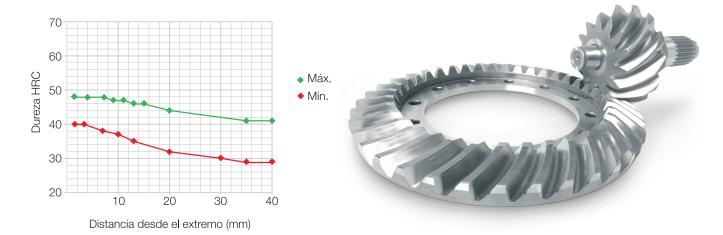
| Análisis sobre colada |             |             |                   |                   |             |             |             |                    |  |  |
|-----------------------|-------------|-------------|-------------------|-------------------|-------------|-------------|-------------|--------------------|--|--|
| Contenido (%)         |             |             |                   |                   |             |             |             |                    |  |  |
| С                     | Si          | Mn          | P <sub>máx.</sub> | S <sub>máx.</sub> | Cr          | Мо          | Ni          | Cu <sub>máx.</sub> |  |  |
| 0,15 - 0,21           | 0,15 - 0,40 | 0,50 - 0,90 | 0,025             | 0,035             | 1,50 - 1,80 | 0,25 - 0,35 | 1,40 - 1,70 | 0,40               |  |  |

| Desviaciones admisibles entre el análisis del producto y los valores especificados para el análisis de colada |       |       |       |        |        |       |       |       |                 |  |
|---------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|--------|-------|-------|-------|-----------------|--|
| Elemento                                                                                                      | С     | Si    | Mn    | Р      | S      | Cr    | Мо    | Ni    | Cu <sub>.</sub> |  |
| Desviación<br>admisible                                                                                       | ±0,02 | +0,03 | ±0,04 | +0,005 | ±0,005 | ±0,05 | ±0,03 | ±0,05 | +0,05           |  |

## Características metalográficas

### Tamaño de grano austenítico (UNE-EN ISO 643-2004)

5 o más fino y ausencia de grano duplex


## Características mecánicas

| Ensayo de tracción 1)                        |             |        |             |              |  |  |  |  |
|----------------------------------------------|-------------|--------|-------------|--------------|--|--|--|--|
| Estado de cementación simulada <sup>2)</sup> |             |        |             |              |  |  |  |  |
| Diámetro nom                                 | inal (mm)   | d ≤ 16 | 16 < d ≤ 40 | 40 < d ≤ 100 |  |  |  |  |
| Resistencia a la tracción                    | Rm<br>(MPa) | ≥1200  | ≥1100       | ≥ 900        |  |  |  |  |

<sup>1)</sup> Ensayo realizado sobre probeta templada a 880-950° C y revenida a 200° C.

<sup>2)</sup> Características a título orientativo.





| Templabilidad jominy <sup>1)</sup> |                            |     |    |    |    |    |    |    |    |    |    |    |    |    |
|------------------------------------|----------------------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| Distanci                           | a desde el extremo<br>(mm) | 1,5 | 3  | 5  | 7  | 9  | 11 | 13 | 15 | 20 | 25 | 30 | 35 | 40 |
| Dureza                             | máx.                       | 48  | 48 | 48 | 48 | 47 | 47 | 46 | 46 | 44 | 43 | 42 | 41 | 41 |
| HRC <sup>2)</sup>                  | min.                       | 40  | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 32 | 31 | 30 | 29 | 29 |

<sup>1)</sup> Temperatura de austenización de la probeta de ensayo: 860° C.

### Condiciones de tratamiento térmico

| Forja o<br>laminación<br>en caliente | Normalizado | Recocido<br>subcrítico | Recocido<br>isotérmico | Cementación | Cementación Temple del Revenido núcleo |  | Ensayo de<br>templabilidad<br>Jominy |  |  |
|--------------------------------------|-------------|------------------------|------------------------|-------------|----------------------------------------|--|--------------------------------------|--|--|
| Temperatura (°C)                     |             |                        |                        |             |                                        |  |                                      |  |  |
|                                      |             |                        | remperatura (          | <u>C)</u>   |                                        |  |                                      |  |  |

### Stock permanente

|         | Dimensiones | nensiones        |                | Tolerancia del                 | Tolerancia | Flecha           |                  |                  |
|---------|-------------|------------------|----------------|--------------------------------|------------|------------------|------------------|------------------|
| Perfil  | (mm)        | entre<br>medidas | Transformación | Material                       | Superficie | diámetro<br>(mm) | de corte<br>(mm) | máxima<br>(mm/m) |
|         | 25-150      | 5                | Laurinania     | Recocido / +QT / +FP  Torneado | -/EN 30060 | ±1               | 4                |                  |
|         | 150-270     | 10               | Laminado       |                                | laminación | s/EN-10060       | ±2               | 4                |
| Redondo | 270-400     | 10               | Facility       |                                | Torneado   | ±3               | ±3               | 4                |
|         | 425-800     | 25               | Forjado        |                                |            | ±3               | ±5               | 4                |

### **Propiedades**

Elevada resistencia en el núcleo y una excelente tenacidad. Apto para uso a bajas temperaturas.

#### **Aplicaciones**

Piezas de tamaño medio y grande que deben presentar una resistencia en el núcleo de 1250 - 1450 MPa después de cementadas y templadas.

Es un acero muy utilizado para elementos mecánicos dentados de responsabilidad, tales como engranajes, coronas y ejes.

Se emplea en la fabricación de reductoras de alta velocidad, vehículos industriales y agrícolas, sector naval, sector eólico, ferrocarril, etc.

<sup>2)</sup> Los valores de dureza se calculan a las distancias señaladas desde el extremo templado de la probeta.